

ELSEVIER Information Processing Letters 81 (2002) 169-174

Information
Processing
Letters

www.elsevier.com/locate/ipl

Comparison of two code scalability tests

Gordon Lyon
Distributed Systems Technologies Group, National Institute of Standards and

Technology,
100 Bureau Drive Stop 8951, Gaithersburg, MD 20899-8951, USA

Received 16 May 1996; received in revised form 6 January 1999
Communicated by F.B. Schneider

Keywords: Analysis; Empiricism; Concurrency; Performance evaluation; Scalability; Software

1. Introduction

"All models are wrong, but some are useful."
George Box

When a computer system is expensive to use or is
not often available, one may want to tune software for
it via analytical models that run on more common, less
costly machines. In contrast, if the host system is read-
ily available, the attraction of analytical models is far
less. One instead employs the actual system, testing
and tuning its software empirically. Two examples of
code scalability testing illustrate how these approaches
differ in objectives and costs, and, how they comple-
ment each other in usefulness.

Concurrent computing requires scalable code [1,8,
12]. Successes of a parallel application often fuel de-
mands that it handle an expanded range. It should
do this without undue waste of additional system re-
sources. Definitions of scalability will vary according
to circumstances — when looking for speedup, prob-
lem size is fixed and the host system grows. In another
case, one evaluates an enlarged problem together with
a larger host [3]. The discussion that follows assumes

E-mail address: lyon@nist.gov (G. Lyon).

no particular scalability metric. As others have com-
mented, "We report our research results only in terms
of execution times, leaving the choice of a scalability
metric to the user" [10].

SLALOM — the Scalable, Language-independent,
Ames Laboratory, One-minute Measurement — is a
code used here as a concrete example. SLALOM ranks
computer systems by the accuracy they achieve on
a realistic image rendering problem in radiosity [4].
Accuracy is denned as geometry "patches" computed
during a test, which SLALOM adjusts automatically
to one minute of execution. By fixing time, SLALOM
accommodates a very broad spectrum of host systems.
SLALOM'S original patch generation — used here —
is 0(N3), a non-linearity that makes interpreting dis-
tances between distinct "patch" ratings less intuitive.
An 0(NlogN) patch generation improves compar-
isons between systems, however, this variant is not so
easily ported to new systems. A sequel benchmark,
HINT, is "linear in answer quality, memory usage and
number of operations" [5].

2. An analytical scalability model

Code scalability can be evaluated analytically via
structural models or empirically through multi-dimen-

0020-0190/02/$ - see front matter Published by Elsevier Science B.V.
PII: S0020-0190(01)00204-6

170 G. Lyon /Information Processing Letters 81 (2002) 169-174

Table 1
Data from SLALOM benchmark
Independent settings
 X

S

Measured dependent response
R (in 'patches')

-1

-1

650 (a)
 +1

-1

401 (b)
 -1

+1

1167 (c)
 +1 .

+1

85.3 (d)

X = -1, +1 denote regular and slower versions, respectively,
of the Setup phase of SLALOM.

S = -1, +1 denote 4 and 32 processors, respectively, on an
iPSC/860.

sional curve fittings. Science has a long history of
results predicted from analytical models constructed
upon a prior body of knowledge. The analytical
paradigm is:

measure details => model => predict response

With software, detailed measurement traces serve as
input to a tailored model, which then yields a re-
sponse corresponding within some accuracy to ac-
tual observation. Imagine that a parallel version of
SLALOM on a 4-processor iPSC/860 host has been
modeled. Checking the model's predicted response of
720 "patches" against an actual performance of 650
(see entry (a) of Table 1) indicates a 10% overestima-
tion of performance. Such checks begin to establish an
appropriate level of confidence in the analytic model.

Modeling Kernel, MK, is designed to avoid test-
ing actual codes on critical and expensive production
systems. Semi-automated, the tool kit MK supports
scalability investigations of message-passing applica-
tions [10]. The described version allows only deter-
ministic message passing. Such a limitation in gen-
erality is not unusual, since sound analytical mod-
els may consume significant effort — prudent restric-
tions diminish modeling costs. Within their chosen do-
main of deterministic message passing, MK models
are accurate enough to eliminate any need for full-
scale tracing and tuning. The method claims 8-20%
error, which is more than adequate for most code de-
velopment.

2.1. Use of the toolkit MK

MK's analysis assumes that inter-processor com-
munication dominates scalability concerns within the
chosen class of scientific applications and host archi-
tecture. A modeled program becomes a flow structure
that, with some delays for computation, principally
triggers the sending and receiving of messages. To do
this, MK generates, decorates and evaluates a struc-
turally condensed program parse tree:
(a) Extract a parse skeleton involving control flow
from the program's code and other invoked codes.
The skeleton records structure for loops, condi-
tionals, invocations and communications.
(b) Add symbolic expressions and actual known val-
ues on various bounds, such as iterations, branch-
ing frequencies, message lengths and basic block
execution times. Many instances have algebraic
loop bounds. Branching frequencies come from
actual execution traces. The modeler supplies sup-
plementary data as needed. Data-dependent exe-
cution behavior may require a hybrid technique
(discussed later).
(c) Augment tree nodes further by attaching commu-
nication phase graphs. Each graph relates a num-
ber of communication operations that together
transport information among a set of processors
during a phase. A data exchange exemplifies a
synchronous phase. The pipeline distribution of
data, on the other hand, typifies an asynchronous
phase. An analysis of actual communication traces
provides the basis for building the phase graphs.
(d) Evaluate the decorated tree. MK can make two
distinct evaluations here. The first is a symbolic
interpretation of the tree; this yields an algebraic
expression for runtime. The second evaluation
generates a simulation time trace.

Symbolic evaluation is preferable, since algebraic
estimates are cheaper than simulations. However, mes-
sage-passing depends upon sometimes complex inter-
actions of topology, protocols, dependencies, traffic
volume and distribution. Limiting these details in the
model saves cost, but carrying this too far risks a com-
plete loss of reliability. For example, with some pro-
grams, having slower code for parallel routine A will
accelerate completion. This occurs by diminishing the
frequency with which the various A's send messages
over congested interconnections. Message retransmis-

G. Lyon /Information Processing Letters 81 (2002) 169-174 171

sions are then fewer. Execution is faster overall. This
behavior must be captured in a model for such classes
of program and host. It precludes any simple solution
that ignores contention. The authors of MK are well
aware of this, yet it appears that for some of their ini-
tial work they can employ the less taxing symbolic
evaluation. They remark that introducing simulation to
handle more complex modeling causes a pronounced
jump in MK's processing demands. However, traces
from MK simulations provide excellent insights into
performance shortcomings.

3. An empirical scalability test

Empirical modeling goes from an observable re-
sponse to specific details:

measure response => model => correlate with details

In contrast to the analytic method, the response is mot
generated by the model — it is measured off the actual
system. Values of the response are correlated against
details called factors [6], each factor having a limited
number of settings (e.g., option Y set "on" or "off",
module versions 5A, 5B or 5C) [2,6]. An observed
response with software is some readily accessible
characteristic, such as run time or average transactions
per unit time [2]. SLALOM'S response is its "patches"
in a one-minute trial. Given that the host system is
readily available but perhaps not well understood,
empirical scalability testing can be highly attractive. It
is especially powerful at screening software factors to
find those associated with performance problems [7]i.

3.1. A handy test

The following is an easy method for checking
code components for scalability. Source code is not
needed, only the ability to patch in delays. The actual
system must be available for running the code. Table 1
has measurements of a parallel version of SLALOM,
where scalability for component Setup is in question.
X and S are independent variables. X = -1 denotes
the usual code for Setup. X = +1 denotes a slower
Setup made by attaching to it an artificial delay. This
computationally benign delay must be large enough to
show up in measurements of response R. Critical to
the test, a delay lowers Setup's efficiency by adding

extra clock cycles. Similarly, S = +1 denotes a larger
scale host system (32 processors in Table 1) and S =
 -1 indicates a smaller scale host (4 processors). The
measured response, R, is a dependent variable. An
intuitive scalability test, given Table 1, is:

 (1)

In essence, as scaling up proceeds, the fractional
drop in performance from added Setup cycles should
not matter more than it did initially. Inserting values
from Table 1 into (1),

0.383 > 0.269 => Setup scales relative to SLALOM.

3.2. More from the same measurements

Test (1), above, is sensitive to errors in measure-
ments a, b, c and d. Each measurement has vari-
ation characterized as standard error, SE. SE arises
from system background and interconnection actions,
non-deterministic algorithms, coarse clocks and simi-
lar factors. Experience shows distributed-memory as
more variable than shared-memory. Observe that a
highly variable host dictates a larger inserted delay,
which if excessive will distort observations.

Repeating each measurement four times and aver-
aging will halve the standard error to SE' = SE/v 4.
However, since a, b, c and d sample the same "noise"
distribution whose mean is assumed zero, these four
measurements can be manipulated to achieve the im-
proved SE' without additional runs.

3.3. EST: an improved Empirical Scalability Test

Consider response R of Table I as a transfer func-
tion R(X, S) with parameters X and S and a bivariate

(Maclauren) expansion about zero [8]:

(2)

172 G. Lyon /Information Processing Letters 81 (2902) 169-174

For identifying scalability bottlenecks, most higher or-
der terms of the expansion can be assumed unimpor-
tant and thus set identically zero. Restricting inter-
est to four major terms yields an approximate expan-
sion:

(3)

(4)

Test (4) restricts acceptance of the effect of Setup's
delay under scaling to at most its current relative im-

portance. Inserting µ = 767.75, ßx = -140.75, ßs =

242.25 and ßx,s = -16.25 into (4),

0.115 < 0.316 => Setup scales relative to SLALOM.

Criterion (4) subsumes the earlier test (1). To see this
let

define the base state fractional drop in performance
from Setup's delay AX analogous to (a — b)/a in
test (1). Similarly, let

denote the fractional drop in performance at scaling
increment ? S caused by delay ? X; this corresponds
to the earlier (c — d)/d. Condition (4) above assures
that the square-bracketed fraction is no greater than
unity, so as in test (1),

4. MK and EST compared

Table 2 highlights the quite different perspectives of
MK and EST. Although MK's implementation is large,
complex and relatively expensive, it also supplies co-
pious details. An MK model explicitly expresses piv-
otal structures and behaviors of the specimen program.
EST is designed as a quick litmus test that locates bot-
tlenecks without explaining them. It assumes a reason-
ably well-behaved response surface within its range of
test. Extrapolating EST results outside of this range
poses a risk that must be offset by additional structural
and behavioral knowledge.

Demands upon the actual system are heavy for both
approaches, but differ in origins and technical details.
Avoiding full-scale runs is MK's raison d'etre. Lack-
ing structural knowledge, EST relies upon actual full-
scale execution behavior. It thereby avoids abstraction
errors found in an analytic model, but pays with the
cost of the runs. MK relies upon system tracings from
smaller runs. These tracings, which generate model in-
put data, can be vexing and costly: Good instrumenta-
tion is not something one can expect on all scalable
systems [9].

Complex interactions between specimen and host
upset both methods. A performance region with a pro-
nounced non-linear scaling response might throw EST
off track. Closely spaced host sizes will help, but the
cost of using EST rises [7]. MK can always incorporate
further complexity into its model and simulation runs,
but this becomes more expensive. Once constructed,

F(a-b)/a > F(c-d)/c•

=> Setup code scales.

The right side of Eq. (3) expresses how performance
R changes as X and 5 assume different settings, as
in Table 1. Product XS, which is +1 only when X
and S share a common setting, indicates an interac-

tion. Linear in unknowns µ, ßx, ßs and ßx,s, Eq. (3)

is solved with values taken from Table 1. Parame-
ter

averages all responses to estimate a base state response
at (X= 0,S=0). Coefficient

is the sensitivity of R to Setup's change in efficiency.
Coefficient

expresses R's sensitivity as scale S changes — the in-
vestigator defines what scale means. SLALOM in Ta-
ble 1 has more processors and more problem calcu-
lation at higher levels of scaling. Interaction coeffi-
cient

expresses how factor S affects factor X. The four
terms define an improved test:

G. Lyon /Information Processing Letters 81 (2002) 169-174 173

Table 2
Contrasting analytical MK and empirical EST

MK's model explores a large number of hypothetical
variations at significantly reduced cost. EST, relying
upon full-scale runs to provide structural information
implicitly, retains a pay-by-the-test flavor.

4.1. Hybrids

Each approach can gain from the other. If EST's
full-scale test runs of a code become impractical, the
statistical underpinning can be adapted to use actual
production runs. Doing this requires an analysis of the
code's structure. Special structural knowledge creates
other EST-like opportunities to assay crucial program
structures, e.g., the barrier test in [11]. On the other
hand, unpredictable, data-dependent control bothers
the analytical structure of MK. In such circumstance^,
analysis of a program's structure supplies few hints for
interpretation bounds. MK solves this by employing
statistical regression to build small (empirical) estima-
tor expressions from data traces [10].

5. Conclusions

Analytical testing incurs modeling expenses but
yields a rich output. Empirical testing applies quickly
and broadly but provides circumscribed results. Nei-
ther approach dominates everywhere. System vendors
and software engineers may prefer analytical tech-
niques, from which they learn much. Vendors will
amortize high modeling costs over many sales of the
software. Service bureaus, on the other hand, just want
to install and tune a code. In such circumstances, an
empirical approach can make practical sense. Hybrids
increase the utility of both methods.

Notes. An earlier version of this paper appeared in
the Proceedings of TDP'96 — International Confer-
ence on Telecommunication, Distribution and Paral-
lelism, June 1996, La Londe Les Maures, France.
Support came from NIST Task 40131 and ARPA
Task 7066.

MK

EST
 Model type

bottom-up — analytical construct built espe-
cially for code tested to mimic its behaviors

top-down — empirical fit to a general multi-
dimensional response curve Input

fine details

factor settings and responses
 Fundamental basis

interpret structure of program and system

correlate measured responses with code/host

changes (settings)
 Focus

targeted to a specific system

general, for any system
 Tool size

large and complex by nature

small
 Need for full scale runs

none — reason for prediction model is to

must have — lacks structural knowledge of

avoid them :

system
 Data demands

heavy — detailed trace capture and collec-

light — response is easily captured
 tion

Demands upon actual system

needs several smaller scale runs with trace

has at least two full-scale runs and two runs
 enabled

at smaller scales
 Tool processing demands

heavy — abstract model interpretation

light — solve 4 linear equations in (4)
 unknowns
 Explanatory power

high — especially with dynamic behavior trace

low — treats problem as transfer function
 Model state space

large and grows with scale

small and fixed
 Display

typical visualization challenges

scalable due to fixed state space

174 G. Lyon / Information Processing Letters 81 (2002) 169-174

References

[1] M.A.M. Al-Abdulkareem, Scalability analysis of large codes
using synthetic perturbations and factorial designs, Disserta-
tion for Doctor of Philosophy, University of Oklahoma, Nor-
man, OK, 1997.

[2] W. Freiberger (Ed.), Statistical Computer Performance Evalu-
ation, Academic Press, New York, 1972.

[3] J.L. Gustafson, Reevaluating Amdahl's law, Comm. ACM 31
(1988) 532-533.

[4] J.L. Gustafson, D. Rover, S. Elbert, Slalom.c source text file,
Ames Laboratory, Ames, IA, 1990.

[5] J.L. Gustafson, Q.O. Snell, HINT: A new way to measure com-
puter performance, available at http://www.scl.ameslab.gov/
Publications/HINT/ComputerPerformance.html (Oct. 1997),
17pp.

[6] R. Jain, The Art of Computer Systems Performance Analysis,
John Wiley & Sons, New York, 1991.

[7] G.E. Lyon, R. Snelick, R. Kacker, Synthetic-perturbation tun-
ing of MIMD programs, J. Supercomput. 8 (1994) 5-27.
(A companion multivariate statistical analysis tool, S-Check,

automates much of this. See http://www.scheck.nist.gov/
scheck for free copies.)

[8] G.E. Lyon, R. Kacker, A. Linz, A scalability test for parallel
code, Software — Practice and Experience 25 (1995) 1299-
1314.

[9] A. Mink, W. Salamon, Operating principles of the PCI bus
MultiKron interface board, Internal Report, NISTIR 5993,
Scalable Parallel Systems and Applications Group, National
hist. of Standards and Tech., Gaithersburg, MD, 1997.

[10] S.R. Sarukkai, P. Mehra, R.J. Block, Automated scalability
analysis of message-passing parallel programs, IEEE Parallel
Distributed Technology 3 (1995) 21-32.

[11] R. Snelick, J. JaJa, R. Kacker, G. Lyon, Synthetic-perturbation
techniques for screening shared memory programs. Software
— Practice and Experience 24 (1994) 679-702.

[12] X.-H. Sun, D. Rover, Scalability of parallel algorithm-machine
combinations, IEEE Tran. Parallel Distributed Systems 5
(1994)599-613.

